A realtime synthesizer controlled by singing and beatboxing

Bart BROUNS
studio magnetophon
Biesenwal 3
Maastricht, Netherlands, 6211AD
bart@magnetophon.nl

Abstract

A realtime instrument was implemented in
pd-extended [1] that translates singing,
beatboxing, and both simultaneous, to a wide
range of melodic and percussive synthetic
sounds. Analysis, synthesis and processing
algorithms where selected and integrated with
a focus on expressive and reliable voice-
control, with an intuitive correlation between
the input and output.

For the parameters that are not voice
controlled, an XY-pad interface was created
allowing the user to interpolate between four
settings.

Keywords
Live-performance, Analysis,
Processing, Interface design.

Synthesis,

1 Introduction

1.1 Related work

There is quite some literature on the
combination of analysis and synthesis, even in the
context of realtime singing and beatboxing, but
often it focuses on either

* mapping any

synthesizer[5]

* closely emulating the input sound and then

applying transformations [17]

* strictly categorizing input sounds and

triggering corresponding output sounds

input sound to any

1.2 Aim

In this work, realtime analysis and synthesis
algorithms where selected and integrated with a
focus on expressive, intuitive and reliable control
by simultaneous singing and beatboxing. Within

those bounds, an effort was made to make the
widest possible range of timbres available.

1.3 Overview

This paper is organized into the categories
analysis, user interface and synthesis, roughly
following the structure of the patch. The Beats
section is discussed separately as it combines
additional analysis and synthesis in the same sub-
patch.

1.3.1

Five kinds of parameter are analyzed for use by

the melodic synthesizers:

* pitch: the fundamental frequency

* timbre: the levels of 16 audio bands'

* formant: the strongest spectral

excluding the fundamental
* onsets: start-point of a new sound
* voiced/unvoiced

1.3.2

Where it made sense, the analysis was linked to
the synthesis parameters in a user-adjustable way.
For example, in the basic subtractive synthesizer
discussed in section 5.8, the cutoff frequency of
the low-pass filter is linked to the detected
formant frequency; the user can control how
much the formant modulates the cutoff.

Both these 'mapping modifiers' and the
synthesis parameters that aren't mapped to the
analysis where made available in a graphical user
interface. Four instances of this interface where
linked to an XY-pad, each corresponding to one
corner, allowing the user to interpolate between
four settings. (see Figure 1).

Analysis

peak

User interface

Actually there are two of these sets, and the level

of other parts of the spectrum is also used.

There are separate preset systems for the four
individual interfaces, defining one sound, and one
for the overarching user interface, combining four
sounds. The time it takes to move between points
on the XY-pad is user-adjustable.

Figure 1: Graphical user interface

1.3.3 Synthesis

There are
processors and combinations. (See Table 1)

twelve parallel synthesizers,

Synthesi Description Sec
zer t.
Clean dynamics processor
Sub sine-wave 5.1
CZ Ring- Pitch-shifter with 5.2
modulator timbre-modification

implemented as a
ring-modulator
Classic variation on an 53
vocoder analog vocoder
PAF vocoder with formant 5.4
vocoder oscillators in place of
output-filters
Vosim variation on PAF 5.5
vocoder
FOF variation on PAF 5.6
vocoder
PM variation on PAF 5.7
vocoder
muug subtractive 5.8
synthesizer
Ipc linear predictive 5.9
coding
mindwarp an extended pitch- 5.10
shifter

beats a kick, snare and hi- 6

hat

Table 1: Synthesizers

All of these, except the muug and the beats, can
produce intelligible speech. They are also capable
of totally warping the input sound, while retaining
an intuitive correlation between the input and
output. They also all remain an octave relation to
the input pitch at all times, again twith the
exception of the beats.

In the next sections I will explain the global
workings of each block.

I will skip over the nitty-gritty like how
parameters are scaled, sometimes in quite
elaborate ways. Still, getting such details right is
crucial to the intuitive functioning of this
instrument.

2 Analysis

This section discusses the analysis used by the
melodic synthesizers. The additonal analysis for
the beats is discussed in section 6.

2.1 Pitch-tracker

The Pitch-tracker is based on helmholtz~ [2].
Even though this is by far the best pitch-tracker I
could find, I think I was able to improve it
somewhat. The author of helmholtz~ is currently
investigating if it makes sense to incorporate my
algorithm into the extension.

2.1.1

helmholtz~ has a pitch output and an output that
indicates the extent to which the signal is
periodic; called fidelity. This gets used by a built
in gate: you set a threshold value for fidelity,
below which the pitch stops outputting new
values. This prevents wild pitch fluctuations when
silent or making un-pitched noises, but it has
issues: With a high threshold it perfectly
eliminates the warble caused by un-pitched noises
or silence, but it misses semi-pitched sounds like
singing below your comfortable range. With a low
threshold it tracks below-range singing though
with occasional warbling, but warbles a lot with
un-pitched noises.

Issues

2.1.2 Solutions

To remedy this I made multiple fidelity ranges
and kept a moving average of good pitch values.
Pitches with medium fidelity are compared with
this average and only outputted if close to it.

This has the wanted effect of ignoring false
pitch measurements, but the side effect of limiting
the speed at which the detected pitch can change.
The number of samples to average now gets a
similar influence as the fidelity threshold had
before: too low and most proposed pitches will be
let trough, resulting in a return of the warbling.
Too high and it sometimes misses sudden pitch
changes.

By varying the number of pitches to average, we
can give the tracker a different sensitivity in
different situations. Specifically, these are the
actions taken for each of the four ranges of pitch
fidelity, and the effect they have:

* very low fidelity: the pitch is ignored and
the number of samples to average is set to
medium low, so that the tracker is quite
flexible right after a silence or un-pitched
noise.

* low fidelity: the pitch is compared to the
average and if close to it, it gets treated as
a OK fidelity pitch. Otherwise it is
ignored.

* OK fidelity: the pitch is outputted, the
number of values to average is increased
by one, and a new average is calculated,
including the new pitch. After about 0.2
seconds the number of samples to average
has risen enough for the tracker to outputs
steady notes, even with difficult inputs

* high fidelity: This is the most common
condition; it happens as soon as you sing a
clear pitch. It outputs the pitch and sets the
number of values to average to low, so
that the tracker is sensitive to quick
changes in pitch.

This sub-patch also outputs pitch fidelity, as it is
a very telling audio feature in itself [5], that gets
used in the onset detector, the formant detector
and the voiced/unvoiced detector amongst others.

2.2 Onset Detector
The onset detector is based on bark~/.[4]
2.2.1

It has a threshold value to determine the
sensitivity, but again, it is impossible to find a
setting that detects all wanted transients, but none
of the unwanted ones.

2.2.2 Solution

The solution is to vary the threshold with pitch
fidelity; now the onset detector is medium
sensitive when singing clear pitches, and very
sensitive when making un or semi pitched
sounds.

This is a joy to use: no false positives, but in
between notes even the tiniest lip or tongue smack
gets detected. When you move between different
vocal sounds, often you automatically make one
or two of these tiny smacks, and as they are a
side-product of your mouth moving about
rhythmically, they fit perfectly with the explicit
notes of the rhythm. These grace-notes are
translated to soft high-hats (section 6.6), so they
end up sounding as ghost-notes like a drummer
would play them.

This hyper sensitive setting works great in a
silent location, even with the monitors turned up,
but needs to be adjusted for live use, as it picks up
every little background noise when the performer
is silent.

Issues

3 Timbre analyzer

The timbre analyzer is a variation on the
analysis part of an analog vocoder: a bank of
bandpass filters followed by envelope followers,
in this case 16 pairs. It differs in that the
frequency of the filters gets modulated by the
pitch, so that the first filter-envelope pair is
always tracking the fundamental and each next
pair one of the partials.

There are two versions of this running together:

* one that tracks up to the 32th partial,
which translates to an upper boundary of
between 2 and 10 kHz with my voice.

* The other goes from slightly below the
fundamental to the 128th partial; covering
the whole spectrum of the input signal

and at the upper boundary often even
more.”

The wide-band analyzer is at the moment only
used by the PM synthesizer.

To make the filter frequencies between the
lowest and the highest logarithmically spaced, I
made an abstraction called VocoderFregs. I will
explain it when discussing the first synthesizer that
uses it too, as it makes more sense in that context.

The signal to be analyzed is compressed,
expanded and limited by the wonderful
qompander~ [3]

4 Formant Tracker

The formant tracker is based on specCentroid~
[4]; an external that reports the frequency
associated with
spectral center of mass.

I'm not sure what that means but perceptually it
is close to what you would expect a formant
tracker to do, except it tends to get confused by
low frequencies and it tends to warble.

The first was solved by high-passing the signal
to be analyzed at the frequency of the
fundamental, and the warbling with a similar
approach as in the pitch tracker discussed earlier.

Specifically, rogue values for the formant are
weeded out with the following steps:

* Only get the specCentroid when pitch
fidelity is high. Simply because I noticed
specCentroid~ outputs mostly garbage at
moments when pitch fidelity is low.

* Ignore the specCentroid if it is lower than
the current pitch. Shouldn't happen
AFAIK, but does...

* Count the number of pitch estimations
since the last onset. (as detected by the
OnsetDetector discussed earlier)

» If this is low, so at the very start of a note,
directly feed the specCentroid to the
formant output.

* After the very start of the note, compare
each proposed value with the moving

2Contrary to what one would expect, the filters in
the wide-band analyzer have a much higher q than
the ones in the other analyzer. I am not sure why,
but the synthesizer that's driven by it sounds better
that way.

average, and only let it trough if it is
close.

This leaves us with a stream of values that
reacts fast at the very beginning of notes, and a bit
more steady after that. It has all of the clearly
wrong values taken out but is still a bit warbly.
Therefore it is smoothed with another moving
average, making it react slower when the formant
is low and faster when the formant is high, and
also slower when there is a lot of variation in the
formant estimates and vice versa.

5 Synthesizers

Where possible, all synthesizers are driven by a
single phaser~, by using lookup tables or lookup
functions as oscillators.

This has three advantages:

* Lower CPU overhead.

* Since all 'oscillators' are in phase they
mesh better. In other words: they sound
more like one oscillator, because they are!

* When I want them to sound like multiple
oscillators, I can vary the phase of each
relative to the master oscillator.

With the right lookup table or function you can
emulate any oscillator in any pitch, as long as it is
an integer number of octaves above the master
oscillator's pitch. Therefore the master oscillator
always runs at the lowest pitch that can be used
anywhere in the synthesizer: two octaves down
from the detected pitch.

5.1 Sub synthesizer

This sub-patch contains the master oscillator
discussed above and a sine wave derived from it.
This sine is normally used in bass synthesizers ,
set to an octave below the input frequency.
Therefore it follows the volume of the bass
frequencies in the input-signal, ducked by the kick
drum to preserve headroom and bass clarity.

5.2 CZ Ring-modulator

This is pd example patch E03 with CZ-
oscillators [6] as the modulator.

The example patch demonstrates using ring
modulation to alias a sound up or down by one or
more octaves. Since the pitches of both signals are
integer multiples of each other, no dissonant
partials are created, so it sounds quite different

from what most people associate with ring-
modulation. This trick is also used in some of the
other synthesizers.

When you do this with a sine as the modulator,
as in the example patch, the result is a reasonably
clean pitch-shifted version of the input signal.
When you do it with other oscillators, the result
has almost the same intelligibility as the input, but
with the character of the oscillator.

For this reason the CZ-oscillators where chosen,
as most of them can steplessly change from sine-
wave to something else, in an interesting way.
They are an emulations of the Casio CZ
oscillators.

One of them features a resonant peak with
controllable frequency. This was linked to the
detected formant frequency, scaled by a user
controllable amount.

There are five sets of each oscillator; one for
each octave from -2 to +2. When morphing
between settings, these oscillators are first mixed,
and only then ring-modulated, so when morphing
between octaves it sounds much more interesting
than a normal audio cross-fade would.

These five sets of oscillators where also made
for the other synthesizers, where it was not too
expensive in terms of CPU-usage, and sounded
interesting when morphed. For most synthesizers
this was too expensive and/or the morph could
only be implemented as a cross-fade between the
oscillators; thus sounding uninteresting.

5.3 Classic vocoder

This is a slight variation on a normal vocoder.

These are the differences:

* It uses the analyzer discussed in section 3

* Obviously the oscillator of the carrier
follows the pitch of the modulator.

* The top and bottom frequencies of the
bandpass-filters in the carrier are
determined by multiplying the pitch by a
user control for each. The frequencies in
between are automatically set to
logarithmic spacing.

The result is that you can move the formants of
your speech up and down, and make them span a
wider or narrower range. All with just two
intuitive knobs, one for the top of the range and
one for the bottom.

The algorithm to calculate the filter frequencies
is the one also used in the analyzer:

n=[1-16]

B= bottom frequency knob
T=top frequency knob

x = (B/T) pow (1/15)
frequency(x)=B*x pow (n-1)

(band number)

The sound-source is a band-limited pulse
oscillator, slaved to the master oscillator.

54 PAF-vocoder

This is like a normal vocoder, but instead of a
single sound source trough multiple bandpass-
filters it uses an oscillator that has a bandpass-like
quality of itself, in place of each bandpass. The
oscillators are made with the PAF (phase-aligned
formant) synthesis algorithm (patented 1993 by
IRCAM). Example patch F13 from pd-extended
was adapted to be slaved to the master-oscillator.

As with the classic vocoder discussed in section
5.3, you can set the top and bottom frequencies of
the formants.

In a similar vain as the CZ-ringmod synthesizer,
each oscillator can be ring-modulated, but this
time with the audio from the corresponding
bandpass-filter in the timbre-analyzer. To my ears
this sounds much more pleasing than ring-
modulating them with the full bandwidth input
signal.

A knob was made to cross-fade between:

* The volume of each oscillator being
controlled by the envelope of the
corresponding analyzer band.

* Each oscillator oscillator being ring
modulated as discussed above. This also
has the side effect of controlling the
volume.

5.5 Vosim-vocoder

This is the same idea as in PAF-vocoder, but
with vosim oscillators [7] instead of PAF, again
slaved to the master oscillator.

The oscillators are routed to the output
alternating between left and right for each one,
giving a nice stereo spread. This spread can be
widened by the phase knob, which alters the
phase of the oscillators, with the ones on the left

channel getting a positive phase offset, and the
ones on the right a negative one.

Finally the oscillators can be ring-modulated
with the input.

5.6 FOF -vocoder

This is another variation on the above theme,
with fofsynth~ from Ggee[8] as oscillators. Since
this external is an actual oscillator and not a
lookup function or table, it is possible to detune
each individually. Each oscillator has it's own
random generator, detuning it by an amount
controlled by a global fof detune parameter. To
maximize the dramatic effect of detuning, there
are two complete synthesizers, one each for left
and right.

As with the PAF vocoder, each oscillator can be
ring-modulated with the audio from the
corresponding bandpass-filter in the timbre-
analyzer.

5.7 PM vocoder

This is a cross between a vocoder and an
additive synthesizer, with Phase modulation
oscillators as the partials.

Each partial consists of one carrier and five
modulators, all slaved to the master oscillator. The
carriers have pitches that are a consonant multiple
of the input fundamental, spaced over the audio
band, so with the phase modulation turned down
this is a 16 partial voice controlled additive
synthesizer. This in contrast with the other
variations on a vocoder where all the oscillators
have the same pitch but a resonant frequency that
is different for each band.

The five modulators have fixed pitches, relative
to the analyzed pitch: each octave from -2 to +2.
As with the other synthesizers that have such
arrays, this was done to make interesting morphs
between perceived octaves possible.

Each modulator also has a variable waveshaper,
drastically widening the available timbre space.

5.8 Muug

This is a subtractive synthesizer, that follows the
input-signal's pitch, volume, and cutoff (trough the

formant tracker). These are scalable by the user,
the pitch in octave steps.

It has a PWM oscillator [1], a triangle-to-saw
oscillator [9] and a muug~ [10] filter. The
oscillators are band-limited and the filter emulates
both the non-linearities and self-oscillation of a
Moog ladder filter.

To further exercise these non-linearities, I've
added adjustable DC offset, both static and
proportional to the level of input-signal.

The combination of DC and lots of gain on the
input-signal has great sonic potential, but can
sometimes choke the filter. To avoid this:

* The static and dynamic offsets are of
opposite polarity. So that they partially
cancel out when the input-signal has a
high level.

* The gain is automatically turned down
when the level of the input-signal is
higher than the output-level, as that
indicates a choked filter. *

This synthesizer can go from mono to stereo,
under control of the input-level. To this end there
are two of these synthesizers: left and right.

Since they share the same parameter values and
the oscillators are slaved to the master, they
output identical sound; thus mono.

Stereo width is created in two ways:

* By making the DC offsets of opposite
polarity for left and right. This is still
mono when you are within the linear
range of the filter, but gets wider the
more distorted it is

* By making a phase offset in the
oscillators, the amount varied with
input signal level.

This is the only synthesizer in the set that can
not produce ineligible speech, though one could
easily make it do so by adding in ring modulation
as described in section 5.2.

This sub-patch is upsampled to twice the
samplerate. Oddly, upsampling more increased
digital artifacts again.

3This works OK but has a tendency to oscillate the
gain when it's pushed hard. At the moment I'm
using a very long release time to make the
oscillating less obvious but I'm looking into
alternatives. (fuzzy logic maybe?)

5.9 LPC

Adapted from the Ipc~ [11] cross synthesis
help file. It has the same “5 oscillators in 5
octaves” array as some of the other synthesizers.

In this case wusing a lookup formula.
Unfortunately I can't trace back the author of it. If
anyone can tell me, I will update this document.

5.10 Mindwarp

A copy of the mindwarp~ [12] help file. So not
even a synthesizer! Sounds great though...

6 Beats

Beats consist of kick, snare and hi-hat,
implemented as:
» pitched [13] and un-pitched kick [14]
* snare noise [14], snare resonance [15] and
clap[16]
* hi-hat [14]

They are triggered when a corresponding sound
is made at the input. In most other
implementations, this is done by classifying input
sounds as either one drum or the other, so that
samples can be triggered. Here, a more fluid
approach is chosen, where the drums vary in
level, pitch, length, timbre and stereo-width in
parallel to what the performer is doing.

In broad lines, the effect is that hi-hats are
played on every onset, kicks and snares have a
cross-fade area, and similarly, snares plus hi-hats
fade into hi-hats only. It was quite convoluted to
make this work reliably when the beat-boxing is
done simultaneously with singing a melody, and at
the same time have it react expressively and be
sensitive to details.

Arguably the most reliable way to categorize
audio in real time is using BFCCs. [4][5]
timbrelD [4] already has a help file
demonstrating this.* While it works quite well, it
has two downsides:
* It requires training the detector with
example sounds

“timbreID-examples/drum-kit.pd

* It only outputs two usable parameters: the
index of the nearest match and the
distance to it.

» It takes separate training to 'teach' it that,
for example, a snare drum on the input
should give the same output as a snare
drum 'sung’ together with a bass note.

Therefore I made a system where all drums get
triggered by each onset, but their level, decay time
and other parameters are modulated by various
audio features. As there are quite a lot of feature
to parameter mappings, the analysis and synthesis
was not (yet) separated into sub-patches.

I will explain the mappings in the following
subsections, starting with the snare noise, as some
of the others depend on it in various ways.

6.1 Snare noise

A snare is played when there is:
* no kick
* 1o hi-hat
* no voice (except during the start)
These five features are used to decide this®:
* overall level
* level of the mid frequencies
* level of the high frequencies
* Spectral centroid [4]
* Spectral rolloff [4]
The first three are measured continuously, and
the last two only at each onset.

Snares are usually vocalized ending with just
high frequencies. The level of the high
frequencies determines the level of the snare, but
not that much level is needed to pin it at
maximum. This allows some control over the
level of the snare, but mostly controls when it
stops. In other words: you can control the length
of the snare by extending the high frequency noise
and then abruptly stopping it.°®

The overall input level turns down the snare
again, but with a slow attack, so when you sing a

SThese where chosen after personal testing, later
confirmed here.

®To enhance the effect, this parameter also
controls the level of an actual reverb on all the
snare components. The reverb comes from [15].

http://williambrent.conflations.com/papers/features.pdf

note and make a snare sound simultaneously, the
snare is still synthesized, but cuts out fairly
quickly.

The level of the mid frequencies is mapped to
the decay time, so that soft to medium sounds get
an almost zero to medium decay time. This is
predominantly what gives the impression that the
snare noise level follows the input level.

Anything louder than medium quickly gets very
long decays, in effect leaving control of the length
to the first two parameters.

The above three parameter mappings may sound
a bit counter-intuitive when written down, but they
where actually chosen for the intuitive control they
offer.

Spectral rolloff is the frequency below which a
certain amount of total spectral energy is
concentrated. It is used to turn down the snare
when there is more low frequency energy then
high, in other words, when the onset is a kick.’

Spectral centroid, discussed in section 4, is used
to determine when there is mostly high frequency
energy in the onset, turning down the snare.

The noise is generated by waveshaping a
feedback loop. [14] This algorithm was chosen
because you can simultaneously change the
volume, spectrum and density in a way not too
different from how a real snare changes in
spectrum and density when changing volume. This
is done by changing the gain inside the feedback
loop. It is this gain and it's envelope that I referred
to in the above passage.

The snare noise starts out mono and gradually
gets wider. To this end, there are two of the above
generators, left and right, plus a third, normal
noise source. A tiny but increasing amount of
normal noise is added into the feedback loop, in
opposite polarity for left and right.

"This on the other hand, sounds perfectly
intuitive on paper but isn't in practice: you need to
take care not to make your snares too bassy.

6.2 Snare resonance

This is made with two identical sets of
resonating bandpass-filters; left and right. They
are excited by a short burst of the noise discussed
above.

Therefore it's level is dependent on the level of
the first few milliseconds of noise. To better
match the perceived input and output-level a few
more mappings where needed:

First an additional level control for the
excitation noise. Since this lasts only very short
time, the measurement also needed to be done
ultra quickly: After experimenting with envelope
followers with different analysis window sizes, I
found I got the best results by combining two
different ones. This measurement was also
mapped to the decay time of the excitation pulse
and to the q of the filters, so that soft inputs create
soft, short, noisy outputs, and the output gets
louder, longer and more tone-like as the input-
level rises, just like a real snare.

The pitch of the resonances drop a bit as the
snare progresses. The louder the input the higher
they start and the longer the drop takes, again
emulating a real snare.®

6.3 Clap

This is an emulation of an 808 clap, again made
with a bandpass-filter and using the noise from
section 6.1 as the exciter. The frequency of the
filter is set by the level measurement from the
previous section.

6.4 Un-pitched kick

This follows the level of the low frequencies,
but is turned down as the snare gets louder. To get
out of the way of the bass, it gets shorter as the
input gets more melodic, as defined by the pitch
fidelity with a long release time.

6.5 Pitched kick

This is a falling sine wave, like a 909 kick. It
starts at a user set pitch and falls to the analyzer
pitch. This allows you to sing melodies with bass

8 Or at least emulating a 909 emulating a real

snare...

drums. The level is determined similarly to the
section above. It features a distortion followed by
a muug~ low pass filter, which can also be driven
into distortion itself.

6.6 Hi-hat

Based on a combination of PM and ring-
modulation. It follows the level of the very high
frequencies, and it's decay is determined by a
combination of timbrelD [4] analyzers.

7 Mixer

Apart from mixing, this sub-patch turns down
synthesizers on unvoiced signals such as fricatives
in speech and beatboxed elements. What happens
on those moments is determined by a user set
parameter. Either the beats take over, or noise with
the spectrum of the input-signal is faded in,
emulating fricatives.

8 Morpher

This sub-patch contains the user interface and
the interpolation between settings.

To maximize ease of use, each knob and fader is
assigned to one of four categories, and color coded
accordingly. (See Table 2)

\ category description color \
level volume knobs white
frequencies | filter frequencies etc. red
dynamics parameters that green

change with input-
level
spectrum anything else that blue
changes the spectrum
spatial parameters that yellow
change the stereo
image
time envelope times etc. gray

Table 2: Color coding

9 Conclusion

An instrument was discussed that allows the
user to quickly create electronic music, sounding
like a finished product, using just a voice. It's
useful in both live and studio settings.

9.1 Future work

Apart from the obvious enhancements like more
synthesizers, more beats and more/better
mappings, there are a couple of directions in
which I would like to develop this instrument.

* Making it possible to save intermediate
settings on the XY-pad to a new preset.

* Allowing additional interpolation points
on the XY-pad, appart from the current
four, possibly wusing the morphOSC
library”.

* Changing out the XY-pad for a 3D and/or
gesture based controller'.

* Using fuzzy logic to better map analysis
to synthesis''.

* Automatically setting the parameters of
the muted synthesizers to blend with the
current sound, for smoother morphing [5].

The main direction I would like to take this in is
integrating it with a looper. A looper is a device
that records audio and loops it on the fly. By
having loops with separate tracks for source
audio, processed audio, and synthesizer
parameters, one can do things like:

* manipulate synth parameters after you've

made a loop'"*

* these manipulations can also be recorded
. either overwriting the old
values
. or extending the length of
the loop

* change one loop while recording another

The next step after that is an algorithmic looper:
By feeding the individual pitches of the loops to
chord recognition software", and linking that to

9 https://github.com/LiamOSullivan/MorphOSC
%0nix Ashanti , Imogen Heap
I Www.rodrigocadiz.com/publications/icmc20

07.pdf and Controlling a sound synthesizer using
timbral attributes

12 Beardyman Talks the BeardyTron 5000

B already made a patch that takes melodies in
the form of midi notes, turns them into block
chords, records those and sees if, and where the
pattern loops.

http://puredata.hurleur.com/sujet-8445-predicting-future-causes-dropouts
http://www.youtube.com/watch?v=Tkoj3tpcXpQ
http://smcnetwork.org/system/files/CONTROLLINGA%20SOUND%20SYNTHESIZER%20USING%20TIMBRAL%20ATTRIBUTES.pdf
http://smcnetwork.org/system/files/CONTROLLINGA%20SOUND%20SYNTHESIZER%20USING%20TIMBRAL%20ATTRIBUTES.pdf
http://www.rodrigocadiz.com/publications/icmc2007.pdf
http://www.rodrigocadiz.com/publications/icmc2007.pdf
http://imogenheap.com/thegloves/
http://www.ted.com/talks/onyx_ashanti_this_is_beatjazz.html
https://github.com/LiamOSullivan/MorphOSC

algorithmic music software'’, one can create an
advanced voice controlled auto-accompaniment.

This would also open up possibilities such as
intelligent pitch-shifting. Ultimately, advanced
workflows such as the following could be
possible:

1) start recording a one bar loop

2) at the end of the loop, press "transpose whole
loop" mode

3) simultaneously you play the note you want the
transposed version to start with

4) you hear the pitch you are playing, but with the
sound of the loop you just recorded

5) switch to another mode, for example to
"bypass" so you can solo over what you just
played without it being recorded or anything

6) the loop keeps playing transposed by the same
amount

7) each time you want the loop to modulate, you
press "transpose whole loop" and play a note

8) at the end of the chord progression you press a
button to indicate this

The software waits until the end of the loop, and
then starts playing back the whole chord
progression.

10 Acknowledgements

While making this patch I've often been amazed
at the amount and quality of the work others have
done and shared. I will spare you the overly
dramatic, but heart felt monologue I had written
before, and just say:

Thank you.

References
[1]pd-extended graphical programing language
[2]helmholtz~ pitch tracker pd-external

[3]gompander~ compressor expander limiter pd-
external

1

“Musical Midi Acompaniment

[4]TimbrelD library of pd-externals for feature
extraction

[5]Stowell 2010: Making music through
real-time voice timbre analysis:
machine learning and timbral control

[6]CZ-oscillators abstraction

[7]vosim~ oscillator abstraction

[8]Ggee library containing fofsynth~
[9]dotmmb library containing blosc~
[10]Jmuug~ moog ladder filter emulation
[11]ekext library containing lpc~

[12] FFTease library containing mindwarp~

[13] DIY2 library containing the basis for the
pitched kick

[14] fairly-efficient-analog-drums_kick, snare and
hi-hat abstractions

[15] Tonal and Atonal patch containing the snare
resonance and the reverb

[16] pdmtl library containing the 808 clap
[17] Singing voice analysis/synthesis

http://music.ece.drexel.edu/files/Navigation/Publications/YEK_thesis.pdf
http://code.goto10.org/projects/pdmtl/
http://www.lubbertdas.org/pd/tonalandatonal.html
http://puredata.hurleur.com/sujet-1093-fairly-efficient-analog-drums
http://puredata.hurleur.com/sujet-1982-1.html
http://puredata.info/downloads/fftease
http://puredata.info/downloads/ekext
https://gitorious.org/muug
https://github.com/dotmmb/mmb
http://puredata.info/downloads/ggee
https://github.com/danomatika/robotcowboy/blob/master/pd/externals/vosim~.pd
http://puredata.hurleur.com/sujet-6796-1.html
http://www.mcld.co.uk/thesis/
http://williambrent.conflations.com/pages/research.html
http://www.katjaas.nl/compander/compander.html
http://www.katjaas.nl/helmholtz/helmholtz.html
http://puredata.info/downloads/pd-extended%E2%80%8E
http://www.mellowood.ca/mma/

